a = c(175, 168, 168, 190, 156, 181, 182, 175, 174, 179)
b = c(185, 169, 173, 173, 188, 186, 175, 174, 179, 180)x<-t.test(a,b)str(x)class(x)> str(x)List of 9 $ statistic : Named num -0.947 ..- attr(*, "names")= chr "t" $ parameter : Named num 16 ..- attr(*, "names")= chr "df" $ p.value : num 0.358 $ conf.int : num [1:2] -11.01 4.21 ..- attr(*, "conf.level")= num 0.95 $ estimate : Named num [1:2] 175 178 ..- attr(*, "names")= chr [1:2] "mean of x" "mean of y" $ null.value : Named num 0 ..- attr(*, "names")= chr "difference in means" $ alternative: chr "two.sided" $ method : chr "Welch Two Sample t-test" $ data.name : chr "a and b" - attr(*, "class")= chr "htest"> class(x)[1] "htest"> x$p.value[1] 0.3575549> x$estimatemean of x mean of y 174.8 178.2 > x$estimate[1]mean of x 174.8 > x$estimate[2]mean of y 178.2 > ========================> x<-cor.test(a,b)
> str(x)List of 9 $ statistic : Named num -0.714 ..- attr(*, "names")= chr "t" $ parameter : Named int 8 ..- attr(*, "names")= chr "df" $ p.value : num 0.496 $ estimate : Named num -0.245 ..- attr(*, "names")= chr "cor" $ null.value : Named num 0 ..- attr(*, "names")= chr "correlation" $ alternative: chr "two.sided" $ method : chr "Pearson's product-moment correlation" $ data.name : chr "a and b" $ conf.int : num [1:2] -0.758 0.455 ..- attr(*, "conf.level")= num 0.95 - attr(*, "class")= chr "htest"> x$p.value[1] 0.4955273> x$estimate cor -0.2447594 >